MakeItFrom.com
Menu (ESC)

N07752 Nickel vs. Grade 23 Titanium

N07752 nickel belongs to the nickel alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N07752 nickel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22
6.7 to 11
Fatigue Strength, MPa 450
470 to 500
Poisson's Ratio 0.29
0.32
Reduction in Area, % 23
30
Shear Modulus, GPa 73
40
Shear Strength, MPa 710
540 to 570
Tensile Strength: Ultimate (UTS), MPa 1120
930 to 940
Tensile Strength: Yield (Proof), MPa 740
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 960
340
Melting Completion (Liquidus), °C 1380
1610
Melting Onset (Solidus), °C 1330
1560
Specific Heat Capacity, J/kg-K 460
560
Thermal Conductivity, W/m-K 13
7.1
Thermal Expansion, µm/m-K 12
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 60
36
Density, g/cm3 8.4
4.4
Embodied Carbon, kg CO2/kg material 10
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 260
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1450
3430 to 3560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 37
58 to 59
Strength to Weight: Bending, points 29
48
Thermal Diffusivity, mm2/s 3.2
2.9
Thermal Shock Resistance, points 34
67 to 68

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
5.5 to 6.5
Boron (B), % 0 to 0.0070
0
Carbon (C), % 0.020 to 0.060
0 to 0.080
Chromium (Cr), % 14.5 to 17
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 5.0 to 9.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 70 to 77.1
0
Niobium (Nb), % 0.7 to 1.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.0080
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0030
0
Titanium (Ti), % 2.3 to 2.8
88.1 to 91
Vanadium (V), % 0 to 0.1
3.5 to 4.5
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0
0 to 0.4