MakeItFrom.com
Menu (ESC)

N08020 Stainless Steel vs. SAE-AISI 1090 Steel

Both N08020 stainless steel and SAE-AISI 1090 steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08020 stainless steel and the bottom bar is SAE-AISI 1090 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 15 to 34
11
Fatigue Strength, MPa 210 to 240
320 to 380
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Shear Strength, MPa 380 to 410
470 to 570
Tensile Strength: Ultimate (UTS), MPa 610 to 620
790 to 950
Tensile Strength: Yield (Proof), MPa 270 to 420
520 to 610

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
50
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 38
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.6
1.4
Embodied Energy, MJ/kg 92
19
Embodied Water, L/kg 220
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 170
82 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 440
730 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21
28 to 34
Strength to Weight: Bending, points 20
24 to 27
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 15
25 to 31

Alloy Composition

Carbon (C), % 0 to 0.070
0.85 to 1.0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 29.9 to 44
98 to 98.6
Manganese (Mn), % 0 to 2.0
0.6 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 38
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.035
0 to 0.050