MakeItFrom.com
Menu (ESC)

N08332 Stainless Steel vs. Grade 29 Titanium

N08332 stainless steel belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08332 stainless steel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
6.8 to 11
Fatigue Strength, MPa 170
460 to 510
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 350
550 to 560
Tensile Strength: Ultimate (UTS), MPa 520
930 to 940
Tensile Strength: Yield (Proof), MPa 210
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1050
340
Melting Completion (Liquidus), °C 1390
1610
Melting Onset (Solidus), °C 1340
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 12
7.3
Thermal Expansion, µm/m-K 16
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 5.4
39
Embodied Energy, MJ/kg 77
640
Embodied Water, L/kg 190
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 110
3420 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18
58 to 59
Strength to Weight: Bending, points 18
47 to 48
Thermal Diffusivity, mm2/s 3.1
2.9
Thermal Shock Resistance, points 12
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.050 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 38.3 to 48.2
0 to 0.25
Lead (Pb), % 0 to 0.0050
0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.030
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4