MakeItFrom.com
Menu (ESC)

N08332 Stainless Steel vs. C28500 Muntz Metal

N08332 stainless steel belongs to the iron alloys classification, while C28500 Muntz Metal belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08332 stainless steel and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
20
Poisson's Ratio 0.28
0.3
Rockwell B Hardness 77
150
Shear Modulus, GPa 76
40
Shear Strength, MPa 350
320
Tensile Strength: Ultimate (UTS), MPa 520
520
Tensile Strength: Yield (Proof), MPa 210
380

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1050
110
Melting Completion (Liquidus), °C 1390
900
Melting Onset (Solidus), °C 1340
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
100
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
33

Otherwise Unclassified Properties

Base Metal Price, % relative 32
22
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.4
2.7
Embodied Energy, MJ/kg 77
46
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
94
Resilience: Unit (Modulus of Resilience), kJ/m3 110
700
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.1
33
Thermal Shock Resistance, points 12
17

Alloy Composition

Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
57 to 59
Iron (Fe), % 38.3 to 48.2
0 to 0.35
Lead (Pb), % 0 to 0.0050
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0
Zinc (Zn), % 0
39.5 to 43
Residuals, % 0
0 to 0.9