MakeItFrom.com
Menu (ESC)

N08332 Stainless Steel vs. C64210 Bronze

N08332 stainless steel belongs to the iron alloys classification, while C64210 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N08332 stainless steel and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
35
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 77
77
Shear Modulus, GPa 76
42
Shear Strength, MPa 350
380
Tensile Strength: Ultimate (UTS), MPa 520
570
Tensile Strength: Yield (Proof), MPa 210
290

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1050
210
Melting Completion (Liquidus), °C 1390
1040
Melting Onset (Solidus), °C 1340
990
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 12
48
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 32
29
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 5.4
3.0
Embodied Energy, MJ/kg 77
49
Embodied Water, L/kg 190
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.1
13
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
89 to 92.2
Iron (Fe), % 38.3 to 48.2
0 to 0.3
Lead (Pb), % 0 to 0.0050
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 34 to 37
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
1.5 to 2.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5