MakeItFrom.com
Menu (ESC)

N08332 Stainless Steel vs. C72700 Copper-nickel

N08332 stainless steel belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N08332 stainless steel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
4.0 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 350
310 to 620
Tensile Strength: Ultimate (UTS), MPa 520
460 to 1070
Tensile Strength: Yield (Proof), MPa 210
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1050
200
Melting Completion (Liquidus), °C 1390
1100
Melting Onset (Solidus), °C 1340
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 12
54
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 5.4
4.0
Embodied Energy, MJ/kg 77
62
Embodied Water, L/kg 190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1420 to 4770
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
14 to 34
Strength to Weight: Bending, points 18
15 to 26
Thermal Diffusivity, mm2/s 3.1
16
Thermal Shock Resistance, points 12
16 to 38

Alloy Composition

Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0 to 1.0
82.1 to 86
Iron (Fe), % 38.3 to 48.2
0 to 0.5
Lead (Pb), % 0 to 0.0050
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 2.0
0.050 to 0.3
Nickel (Ni), % 34 to 37
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.75 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0 to 0.025
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3