MakeItFrom.com
Menu (ESC)

N08904 Stainless Steel vs. S44536 Stainless Steel

Both N08904 stainless steel and S44536 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 68% of their average alloy composition in common.

For each property being compared, the top bar is N08904 stainless steel and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
22
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 77
79
Shear Modulus, GPa 79
78
Shear Strength, MPa 370
290
Tensile Strength: Ultimate (UTS), MPa 540
460
Tensile Strength: Yield (Proof), MPa 240
280

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 430
560
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 5.8
2.8
Embodied Energy, MJ/kg 79
41
Embodied Water, L/kg 200
140

Common Calculations

PREN (Pitting Resistance) 37
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
89
Resilience: Unit (Modulus of Resilience), kJ/m3 150
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 3.1
5.6
Thermal Shock Resistance, points 12
16

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.015
Chromium (Cr), % 19 to 23
20 to 23
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 38.8 to 53
72.8 to 80
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 23 to 28
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0 to 0.1
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.035
0 to 0.030
Titanium (Ti), % 0
0 to 0.8