MakeItFrom.com
Menu (ESC)

N10675 Nickel vs. EN 1.4584 Stainless Steel

N10675 nickel belongs to the nickel alloys classification, while EN 1.4584 stainless steel belongs to the iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N10675 nickel and the bottom bar is EN 1.4584 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 47
34
Fatigue Strength, MPa 350
170
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 85
79
Tensile Strength: Ultimate (UTS), MPa 860
500
Tensile Strength: Yield (Proof), MPa 400
210

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 910
1100
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1370
1390
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 11
17
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 9.3
8.1
Embodied Carbon, kg CO2/kg material 16
5.7
Embodied Energy, MJ/kg 210
78
Embodied Water, L/kg 280
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
140
Resilience: Unit (Modulus of Resilience), kJ/m3 350
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.1
4.5
Thermal Shock Resistance, points 26
12

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Carbon (C), % 0 to 0.010
0 to 0.025
Chromium (Cr), % 1.0 to 3.0
19 to 21
Cobalt (Co), % 0 to 3.0
0
Copper (Cu), % 0 to 0.2
1.0 to 3.0
Iron (Fe), % 1.0 to 3.0
41.7 to 52
Manganese (Mn), % 0 to 3.0
0 to 2.0
Molybdenum (Mo), % 27 to 32
4.0 to 5.0
Nickel (Ni), % 51.3 to 71
24 to 26
Niobium (Nb), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.020
Tantalum (Ta), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0 to 3.0
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0