MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. Grade 9 Titanium

R30155 cobalt belongs to the iron alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
11 to 17
Fatigue Strength, MPa 310
330 to 480
Poisson's Ratio 0.29
0.32
Reduction in Area, % 34
28
Shear Modulus, GPa 81
40
Shear Strength, MPa 570
430 to 580
Tensile Strength: Ultimate (UTS), MPa 850
700 to 960
Tensile Strength: Yield (Proof), MPa 390
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1470
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 450
550
Thermal Conductivity, W/m-K 12
8.1
Thermal Expansion, µm/m-K 14
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 80
37
Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 9.7
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 300
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 370
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 28
43 to 60
Strength to Weight: Bending, points 24
39 to 48
Thermal Diffusivity, mm2/s 3.2
3.3
Thermal Shock Resistance, points 21
52 to 71

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.080 to 0.16
0 to 0.080
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 24.3 to 36.2
0 to 0.25
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
92.6 to 95.5
Tungsten (W), % 2.0 to 3.0
0
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4