MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.0034 Steel

Both R30556 alloy and EN 1.0034 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.0034 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
9.0 to 32
Fatigue Strength, MPa 320
140 to 170
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550
220 to 230
Tensile Strength: Ultimate (UTS), MPa 780
340 to 380
Tensile Strength: Yield (Proof), MPa 350
180 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
53
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 130
18
Embodied Water, L/kg 300
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 290
84 to 210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
12 to 13
Strength to Weight: Bending, points 22
14 to 15
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 18
11 to 12

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0 to 0.15
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
98.7 to 100
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0 to 0.7
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0.2 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.045
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0