MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.0107 Steel

Both R30556 alloy and EN 1.0107 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.0107 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
29
Fatigue Strength, MPa 320
160
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550
250
Tensile Strength: Ultimate (UTS), MPa 780
380
Tensile Strength: Yield (Proof), MPa 350
210

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
51
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 70
2.1
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.5
Embodied Energy, MJ/kg 130
19
Embodied Water, L/kg 300
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
95
Resilience: Unit (Modulus of Resilience), kJ/m3 290
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
13
Strength to Weight: Bending, points 22
15
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0 to 0.13
Chromium (Cr), % 21 to 23
0 to 0.3
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 20.4 to 38.2
97.7 to 100
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0 to 0.7
Molybdenum (Mo), % 2.5 to 4.0
0 to 0.080
Nickel (Ni), % 19 to 22.5
0 to 0.3
Niobium (Nb), % 0 to 0.3
0 to 0.010
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.020
Tantalum (Ta), % 0.3 to 1.3
0
Titanium (Ti), % 0
0 to 0.040
Tungsten (W), % 2.0 to 3.5
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0.0010 to 0.1
0