MakeItFrom.com
Menu (ESC)

R56406 Titanium vs. S21600 Stainless Steel

R56406 titanium belongs to the titanium alloys classification, while S21600 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is R56406 titanium and the bottom bar is S21600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
46
Fatigue Strength, MPa 480
360
Poisson's Ratio 0.32
0.28
Reduction in Area, % 16
56
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 980
710
Tensile Strength: Yield (Proof), MPa 850
390

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
990
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Expansion, µm/m-K 9.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
17
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 38
3.6
Embodied Energy, MJ/kg 610
50
Embodied Water, L/kg 200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
270
Resilience: Unit (Modulus of Resilience), kJ/m3 3420
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
25
Strength to Weight: Bending, points 49
23
Thermal Shock Resistance, points 69
15

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
17.5 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
57.6 to 67.8
Manganese (Mn), % 0
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
5.0 to 7.0
Nitrogen (N), % 0 to 0.050
0.25 to 0.5
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0