S15500 Stainless Steel vs. EN 1.4028 Stainless Steel
Both S15500 stainless steel and EN 1.4028 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is S15500 stainless steel and the bottom bar is EN 1.4028 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 6.8 to 16 | |
11 to 17 |
Fatigue Strength, MPa | 350 to 650 | |
230 to 400 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 75 | |
76 |
Shear Strength, MPa | 540 to 870 | |
410 to 550 |
Tensile Strength: Ultimate (UTS), MPa | 890 to 1490 | |
660 to 930 |
Tensile Strength: Yield (Proof), MPa | 590 to 1310 | |
390 to 730 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
270 |
Maximum Temperature: Corrosion, °C | 440 | |
390 |
Maximum Temperature: Mechanical, °C | 820 | |
760 |
Melting Completion (Liquidus), °C | 1430 | |
1440 |
Melting Onset (Solidus), °C | 1380 | |
1400 |
Specific Heat Capacity, J/kg-K | 480 | |
480 |
Thermal Conductivity, W/m-K | 17 | |
30 |
Thermal Expansion, µm/m-K | 11 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
2.8 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
3.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
7.0 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
1.9 |
Embodied Energy, MJ/kg | 39 | |
27 |
Embodied Water, L/kg | 130 | |
100 |
Common Calculations
PREN (Pitting Resistance) | 15 | |
13 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 98 to 120 | |
94 to 96 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 890 to 4460 | |
380 to 1360 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 32 to 53 | |
24 to 33 |
Strength to Weight: Bending, points | 26 to 37 | |
22 to 27 |
Thermal Diffusivity, mm2/s | 4.6 | |
8.1 |
Thermal Shock Resistance, points | 30 to 50 | |
23 to 32 |
Alloy Composition
Carbon (C), % | 0 to 0.070 | |
0.26 to 0.35 |
Chromium (Cr), % | 14 to 15.5 | |
12 to 14 |
Copper (Cu), % | 2.5 to 4.5 | |
0 |
Iron (Fe), % | 71.9 to 79.9 | |
83.1 to 87.7 |
Manganese (Mn), % | 0 to 1.0 | |
0 to 1.5 |
Nickel (Ni), % | 3.5 to 5.5 | |
0 |
Niobium (Nb), % | 0.15 to 0.45 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.015 |