MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. 2095 Aluminum

S15700 stainless steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 1.1 to 29
8.5
Fatigue Strength, MPa 370 to 770
200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 770 to 1070
410
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
700
Tensile Strength: Yield (Proof), MPa 500 to 1770
610

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.4
8.6
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 140
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
57
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 42 to 67
65
Strength to Weight: Bending, points 32 to 43
59
Thermal Diffusivity, mm2/s 4.2
49
Thermal Shock Resistance, points 39 to 63
31

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
91.3 to 94.9
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 69.6 to 76.8
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15