MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. 5059 Aluminum

S15700 stainless steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 1.1 to 29
11 to 25
Fatigue Strength, MPa 370 to 770
170 to 240
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 770 to 1070
220 to 250
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
350 to 410
Tensile Strength: Yield (Proof), MPa 500 to 1770
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Corrosion, °C 400
65
Maximum Temperature: Mechanical, °C 870
210
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
510
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.4
9.1
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
220 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 42 to 67
36 to 42
Strength to Weight: Bending, points 32 to 43
41 to 45
Thermal Diffusivity, mm2/s 4.2
44
Thermal Shock Resistance, points 39 to 63
16 to 18

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
89.9 to 94
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 69.6 to 76.8
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants