MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. 5457 Aluminum

S15700 stainless steel belongs to the iron alloys classification, while 5457 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 460
32 to 55
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 1.1 to 29
6.0 to 22
Fatigue Strength, MPa 370 to 770
55 to 98
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 770 to 1070
85 to 130
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
130 to 210
Tensile Strength: Yield (Proof), MPa 500 to 1770
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
180
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
46
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
150

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.4
Embodied Energy, MJ/kg 47
160
Embodied Water, L/kg 140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
18 to 250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 42 to 67
13 to 21
Strength to Weight: Bending, points 32 to 43
21 to 28
Thermal Diffusivity, mm2/s 4.2
72
Thermal Shock Resistance, points 39 to 63
5.7 to 9.0

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
97.8 to 99.05
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 69.6 to 76.8
0 to 0.1
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.0
0.15 to 0.45
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.080
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1

Comparable Variants