MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. EN 1.4597 Stainless Steel

Both S15700 stainless steel and EN 1.4597 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 460
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.1 to 29
45
Fatigue Strength, MPa 370 to 770
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 770 to 1070
470
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
680
Tensile Strength: Yield (Proof), MPa 500 to 1770
330

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 400
410
Maximum Temperature: Mechanical, °C 870
860
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1400
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.5
Embodied Energy, MJ/kg 47
36
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 23
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
250
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 42 to 67
25
Strength to Weight: Bending, points 32 to 43
22
Thermal Diffusivity, mm2/s 4.2
4.1
Thermal Shock Resistance, points 39 to 63
15

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Carbon (C), % 0 to 0.090
0 to 0.1
Chromium (Cr), % 14 to 16
15 to 18
Copper (Cu), % 0
2.0 to 3.5
Iron (Fe), % 69.6 to 76.8
63 to 76.4
Manganese (Mn), % 0 to 1.0
6.5 to 9.0
Molybdenum (Mo), % 2.0 to 3.0
0 to 1.0
Nickel (Ni), % 6.5 to 7.7
0 to 3.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.030