MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. Titanium 6-5-0.5

S15700 stainless steel belongs to the iron alloys classification, while titanium 6-5-0.5 belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is titanium 6-5-0.5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 1.1 to 29
6.7
Fatigue Strength, MPa 370 to 770
530
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 770 to 1070
630
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
1080
Tensile Strength: Yield (Proof), MPa 500 to 1770
990

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 870
300
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
4.2
Thermal Expansion, µm/m-K 11
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
41
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.4
33
Embodied Energy, MJ/kg 47
540
Embodied Water, L/kg 140
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
71
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
4630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 42 to 67
67
Strength to Weight: Bending, points 32 to 43
52
Thermal Diffusivity, mm2/s 4.2
1.7
Thermal Shock Resistance, points 39 to 63
79

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
5.7 to 6.3
Carbon (C), % 0 to 0.090
0 to 0.080
Chromium (Cr), % 14 to 16
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 69.6 to 76.8
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.0 to 3.0
0.25 to 0.75
Nickel (Ni), % 6.5 to 7.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.19
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
85.6 to 90.1
Zirconium (Zr), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.4