MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. C16500 Copper

S15700 stainless steel belongs to the iron alloys classification, while C16500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.1 to 29
1.5 to 53
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 770 to 1070
200 to 310
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
280 to 530
Tensile Strength: Yield (Proof), MPa 500 to 1770
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 870
340
Melting Completion (Liquidus), °C 1440
1070
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
250
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
61

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
41 to 1160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 67
8.6 to 17
Strength to Weight: Bending, points 32 to 43
11 to 16
Thermal Diffusivity, mm2/s 4.2
74
Thermal Shock Resistance, points 39 to 63
9.8 to 19

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
97.8 to 98.9
Iron (Fe), % 69.6 to 76.8
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.7
Residuals, % 0
0 to 0.5