MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. C62300 Bronze

S15700 stainless steel belongs to the iron alloys classification, while C62300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.1 to 29
18 to 32
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 770 to 1070
360 to 390
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
570 to 630
Tensile Strength: Yield (Proof), MPa 500 to 1770
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 870
220
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
54
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 15
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.4
3.1
Embodied Energy, MJ/kg 47
52
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
240 to 430
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 42 to 67
19 to 21
Strength to Weight: Bending, points 32 to 43
18 to 20
Thermal Diffusivity, mm2/s 4.2
15
Thermal Shock Resistance, points 39 to 63
20 to 22

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
8.5 to 10
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
83.2 to 89.5
Iron (Fe), % 69.6 to 76.8
2.0 to 4.0
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.6
Residuals, % 0
0 to 0.5