MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. C71640 Copper-nickel

S15700 stainless steel belongs to the iron alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
52
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
490 to 630
Tensile Strength: Yield (Proof), MPa 500 to 1770
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 870
260
Melting Completion (Liquidus), °C 1440
1180
Melting Onset (Solidus), °C 1400
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
29
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.4
5.0
Embodied Energy, MJ/kg 47
73
Embodied Water, L/kg 140
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 42 to 67
15 to 20
Strength to Weight: Bending, points 32 to 43
16 to 18
Thermal Diffusivity, mm2/s 4.2
8.2
Thermal Shock Resistance, points 39 to 63
16 to 21

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
61.7 to 67.8
Iron (Fe), % 69.6 to 76.8
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
1.5 to 2.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
29 to 32
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5