MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. EN 1.4982 Stainless Steel

Both S17400 stainless steel and EN 1.4982 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 21
28
Fatigue Strength, MPa 380 to 670
420
Impact Strength: V-Notched Charpy, J 7.6 to 86
57
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 570 to 830
490
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
750
Tensile Strength: Yield (Proof), MPa 580 to 1250
570

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 450
540
Maximum Temperature: Mechanical, °C 850
860
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
13
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.9
Embodied Energy, MJ/kg 39
71
Embodied Water, L/kg 130
150

Common Calculations

PREN (Pitting Resistance) 16
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 49
27
Strength to Weight: Bending, points 27 to 35
23
Thermal Diffusivity, mm2/s 4.5
3.4
Thermal Shock Resistance, points 30 to 46
17

Alloy Composition

Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0 to 0.070
0.070 to 0.13
Chromium (Cr), % 15 to 17
14 to 16
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
61.8 to 69.7
Manganese (Mn), % 0 to 1.0
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 3.0 to 5.0
9.0 to 11
Niobium (Nb), % 0.15 to 0.45
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.15 to 0.4