MakeItFrom.com
Menu (ESC)

S20161 Stainless Steel vs. EN 1.4594 Stainless Steel

Both S20161 stainless steel and EN 1.4594 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S20161 stainless steel and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 46
11 to 17
Fatigue Strength, MPa 360
490 to 620
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 690
620 to 700
Tensile Strength: Ultimate (UTS), MPa 980
1020 to 1170
Tensile Strength: Yield (Proof), MPa 390
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 870
820
Melting Completion (Liquidus), °C 1380
1450
Melting Onset (Solidus), °C 1330
1410
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 7.5
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
130

Common Calculations

PREN (Pitting Resistance) 19
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 360
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 390
1660 to 3320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 36
36 to 41
Strength to Weight: Bending, points 29
29 to 31
Thermal Diffusivity, mm2/s 4.0
4.4
Thermal Shock Resistance, points 22
34 to 39

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.070
Chromium (Cr), % 15 to 18
13 to 15
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 65.6 to 73.9
72.6 to 79.5
Manganese (Mn), % 4.0 to 6.0
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 4.0 to 6.0
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 3.0 to 4.0
0 to 0.7
Sulfur (S), % 0 to 0.040
0 to 0.015