MakeItFrom.com
Menu (ESC)

S20161 Stainless Steel vs. C61400 Bronze

S20161 stainless steel belongs to the iron alloys classification, while C61400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S20161 stainless steel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 46
34 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 690
370 to 380
Tensile Strength: Ultimate (UTS), MPa 980
540 to 570
Tensile Strength: Yield (Proof), MPa 390
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 870
220
Melting Completion (Liquidus), °C 1380
1050
Melting Onset (Solidus), °C 1330
1040
Specific Heat Capacity, J/kg-K 490
420
Thermal Conductivity, W/m-K 15
67
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
15

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.5
8.5
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 360
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 390
210 to 310
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 36
18 to 19
Strength to Weight: Bending, points 29
17 to 18
Thermal Diffusivity, mm2/s 4.0
19
Thermal Shock Resistance, points 22
18 to 20

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 18
0
Copper (Cu), % 0
86 to 92.5
Iron (Fe), % 65.6 to 73.9
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 4.0 to 6.0
0 to 1.0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 3.0 to 4.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5