MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. 5019 Aluminum

S21640 stainless steel belongs to the iron alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 46
2.2 to 18
Fatigue Strength, MPa 320
100 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 520
170 to 210
Tensile Strength: Ultimate (UTS), MPa 740
280 to 360
Tensile Strength: Yield (Proof), MPa 350
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
98

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.6
9.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 300
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 27
29 to 38
Strength to Weight: Bending, points 23
35 to 42
Thermal Diffusivity, mm2/s 4.0
52
Thermal Shock Resistance, points 16
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 19.5
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 63 to 74.3
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 3.5 to 6.5
0.1 to 0.6
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15