MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. A206.0 Aluminum

S21640 stainless steel belongs to the iron alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 46
4.2 to 10
Fatigue Strength, MPa 320
90 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 520
260
Tensile Strength: Ultimate (UTS), MPa 740
390 to 440
Tensile Strength: Yield (Proof), MPa 350
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
670
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
90

Otherwise Unclassified Properties

Base Metal Price, % relative 17
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.6
8.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 300
440 to 1000
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 27
36 to 41
Strength to Weight: Bending, points 23
39 to 43
Thermal Diffusivity, mm2/s 4.0
48
Thermal Shock Resistance, points 16
17 to 19

Alloy Composition

Aluminum (Al), % 0
93.9 to 95.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 63 to 74.3
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 3.5 to 6.5
0 to 0.2
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
0 to 0.050
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15