MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. AISI 444 Stainless Steel

Both S21640 stainless steel and AISI 444 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 46
23
Fatigue Strength, MPa 320
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 520
300
Tensile Strength: Ultimate (UTS), MPa 740
470
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 490
580
Maximum Temperature: Mechanical, °C 940
930
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.6
3.4
Embodied Energy, MJ/kg 51
47
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
95
Resilience: Unit (Modulus of Resilience), kJ/m3 300
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.0
6.2
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 17.5 to 19.5
17.5 to 19.5
Iron (Fe), % 63 to 74.3
73.3 to 80.8
Manganese (Mn), % 3.5 to 6.5
0 to 1.0
Molybdenum (Mo), % 0.5 to 2.0
1.8 to 2.5
Nickel (Ni), % 4.0 to 6.5
0 to 1.0
Niobium (Nb), % 0.1 to 1.0
0.2 to 0.8
Nitrogen (N), % 0.080 to 0.3
0 to 0.035
Phosphorus (P), % 0 to 0.060
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8