MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. CC764S Brass

S21640 stainless steel belongs to the iron alloys classification, while CC764S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
160
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 740
680
Tensile Strength: Yield (Proof), MPa 350
290

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 940
130
Melting Completion (Liquidus), °C 1430
850
Melting Onset (Solidus), °C 1380
810
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
94
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
36

Otherwise Unclassified Properties

Base Metal Price, % relative 17
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.6
2.9
Embodied Energy, MJ/kg 51
49
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
80
Resilience: Unit (Modulus of Resilience), kJ/m3 300
390
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
30
Thermal Shock Resistance, points 16
22

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
52 to 66
Iron (Fe), % 63 to 74.3
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 3.5 to 6.5
0.3 to 4.0
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
0 to 3.0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
20.7 to 50.2