MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. Grade 35 Titanium

S21640 stainless steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
5.6
Fatigue Strength, MPa 320
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
41
Shear Strength, MPa 520
580
Tensile Strength: Ultimate (UTS), MPa 740
1000
Tensile Strength: Yield (Proof), MPa 350
630

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 940
320
Melting Completion (Liquidus), °C 1430
1630
Melting Onset (Solidus), °C 1380
1580
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
7.4
Thermal Expansion, µm/m-K 17
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
37
Density, g/cm3 7.7
4.6
Embodied Carbon, kg CO2/kg material 3.6
33
Embodied Energy, MJ/kg 51
530
Embodied Water, L/kg 150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
49
Resilience: Unit (Modulus of Resilience), kJ/m3 300
1830
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27
61
Strength to Weight: Bending, points 23
49
Thermal Diffusivity, mm2/s 4.0
3.0
Thermal Shock Resistance, points 16
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17.5 to 19.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63 to 74.3
0.2 to 0.8
Manganese (Mn), % 3.5 to 6.5
0
Molybdenum (Mo), % 0.5 to 2.0
1.5 to 2.5
Nickel (Ni), % 4.0 to 6.5
0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0.2 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4