MakeItFrom.com
Menu (ESC)

S21800 Stainless Steel vs. EN 1.0478 Steel

Both S21800 stainless steel and EN 1.0478 steel are iron alloys. They have 64% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S21800 stainless steel and the bottom bar is EN 1.0478 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 40
24
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 510
280
Tensile Strength: Ultimate (UTS), MPa 740
440
Tensile Strength: Yield (Proof), MPa 390
230

Thermal Properties

Latent Heat of Fusion, J/g 340
250
Maximum Temperature: Mechanical, °C 900
400
Melting Completion (Liquidus), °C 1360
1460
Melting Onset (Solidus), °C 1310
1420
Specific Heat Capacity, J/kg-K 500
470
Thermal Expansion, µm/m-K 16
12

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.2
Density, g/cm3 7.5
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.5
Embodied Energy, MJ/kg 45
20
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
90
Resilience: Unit (Modulus of Resilience), kJ/m3 390
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 27
16
Strength to Weight: Bending, points 24
16
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.1
0 to 0.18
Chromium (Cr), % 16 to 18
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 59.1 to 65.4
96.9 to 99.4
Manganese (Mn), % 7.0 to 9.0
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 8.0 to 9.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0.080 to 0.18
0 to 0.020
Phosphorus (P), % 0 to 0.060
0 to 0.025
Silicon (Si), % 3.5 to 4.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0 to 0.050