MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. 3104 Aluminum

S21904 stainless steel belongs to the iron alloys classification, while 3104 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is 3104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17 to 51
1.1 to 20
Fatigue Strength, MPa 380 to 550
74 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 510 to 620
110 to 180
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
170 to 310
Tensile Strength: Yield (Proof), MPa 390 to 910
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1350
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.0
8.4
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
1.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
34 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25 to 36
17 to 31
Strength to Weight: Bending, points 23 to 29
25 to 37
Thermal Diffusivity, mm2/s 3.8
64
Thermal Shock Resistance, points 15 to 21
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
95.1 to 98.4
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0
Copper (Cu), % 0
0.050 to 0.25
Gallium (Ga), % 0
0 to 0.050
Iron (Fe), % 59.5 to 67.4
0 to 0.8
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 8.0 to 10
0.8 to 1.4
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants