MakeItFrom.com
Menu (ESC)

S21904 Stainless Steel vs. C12500 Copper

S21904 stainless steel belongs to the iron alloys classification, while C12500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S21904 stainless steel and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17 to 51
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 510 to 620
150 to 220
Tensile Strength: Ultimate (UTS), MPa 700 to 1000
220 to 420
Tensile Strength: Yield (Proof), MPa 390 to 910
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1350
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 14
350
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
92
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
93

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160 to 310
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 2070
24 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25 to 36
6.9 to 13
Strength to Weight: Bending, points 23 to 29
9.1 to 14
Thermal Diffusivity, mm2/s 3.8
100
Thermal Shock Resistance, points 15 to 21
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 19 to 21.5
0
Copper (Cu), % 0
99.88 to 100
Iron (Fe), % 59.5 to 67.4
0
Lead (Pb), % 0
0 to 0.0040
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 5.5 to 7.5
0 to 0.050
Nitrogen (N), % 0.15 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0 to 0.025
Residuals, % 0
0 to 0.3