MakeItFrom.com
Menu (ESC)

S30452 Stainless Steel vs. 2618 Aluminum

S30452 stainless steel belongs to the iron alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30452 stainless steel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
120
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
5.8
Fatigue Strength, MPa 250
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 440
260
Tensile Strength: Ultimate (UTS), MPa 660
420
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
23
Resilience: Unit (Modulus of Resilience), kJ/m3 250
850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 23
40
Strength to Weight: Bending, points 22
42
Thermal Diffusivity, mm2/s 4.2
62
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
1.9 to 2.7
Iron (Fe), % 66.3 to 73.8
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0.9 to 1.2
Nitrogen (N), % 0.16 to 0.3
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.1 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15