UNS S30452 (XM-21) Stainless Steel
S30452 stainless steel is an austenitic stainless steel formulated for primary forming into wrought products. Cited properties are appropriate for the annealed condition. XM-21 is the ASTM designation for this material. S30452 is the UNS number.
It has a moderately low ductility among the wrought austenitic stainless steels in the database.
The graph bars on the material properties cards below compare S30452 stainless steel to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.
Mechanical Properties
Brinell Hardness
210
Elastic (Young's, Tensile) Modulus
200 GPa 29 x 106 psi
Elongation at Break
34 %
Fatigue Strength
250 MPa 36 x 103 psi
Poisson's Ratio
0.28
Rockwell B Hardness
88
Shear Modulus
77 GPa 11 x 106 psi
Shear Strength
440 MPa 63 x 103 psi
Tensile Strength: Ultimate (UTS)
660 MPa 95 x 103 psi
Tensile Strength: Yield (Proof)
310 MPa 45 x 103 psi
Thermal Properties
Latent Heat of Fusion
290 J/g
Maximum Temperature: Corrosion
420 °C 790 °F
Maximum Temperature: Mechanical
960 °C 1760 °F
Melting Completion (Liquidus)
1420 °C 2590 °F
Melting Onset (Solidus)
1380 °C 2510 °F
Specific Heat Capacity
480 J/kg-K 0.11 BTU/lb-°F
Thermal Conductivity
16 W/m-K 9.1 BTU/h-ft-°F
Thermal Expansion
16 µm/m-K
Electrical Properties
Electrical Conductivity: Equal Volume
2.4 % IACS
Electrical Conductivity: Equal Weight (Specific)
2.7 % IACS
Otherwise Unclassified Properties
Base Metal Price
15 % relative
Density
7.8 g/cm3 490 lb/ft3
Embodied Carbon
3.0 kg CO2/kg material
Embodied Energy
43 MJ/kg 18 x 103 BTU/lb
Embodied Water
150 L/kg 17 gal/lb
Common Calculations
PREN (Pitting Resistance)
23
Resilience: Ultimate (Unit Rupture Work)
180 MJ/m3
Resilience: Unit (Modulus of Resilience)
250 kJ/m3
Stiffness to Weight: Axial
14 points
Stiffness to Weight: Bending
25 points
Strength to Weight: Axial
23 points
Strength to Weight: Bending
22 points
Thermal Diffusivity
4.2 mm2/s
Thermal Shock Resistance
15 points
Alloy Composition
Among wrought stainless steels, the composition of S30452 stainless steel is notable for containing comparatively high amounts of chromium (Cr) and nickel (Ni). Chromium is the defining alloying element of stainless steel. Higher chromium content imparts additional corrosion resistance. Nickel is primarily used to achieve a specific microstructure. In addition, it has a beneficial effect on mechanical properties and certain types of corrosion.
Fe | 66.3 to 73.8 | |
Cr | 18 to 20 | |
Ni | 8.0 to 10.5 | |
Mn | 0 to 2.0 | |
Si | 0 to 0.75 | |
N | 0.16 to 0.3 | |
C | 0 to 0.080 | |
P | 0 to 0.045 | |
S | 0 to 0.030 |
All values are % weight. Ranges represent what is permitted under applicable standards.
Followup Questions
Similar Alloys
Further Reading
ASTM A240: Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
Welding Metallurgy of Stainless Steels, Erich Folkhard et al., 2012
ASTM A959: Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Stainless Steels
Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002
Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984
ASM Specialty Handbook: Stainless Steels, J. R. Davis (editor), 1994
Advances in Stainless Steels, Baldev Raj et al. (editors), 2010