MakeItFrom.com
Menu (ESC)

UNS S30452 (XM-21) Stainless Steel

S30452 stainless steel is an austenitic stainless steel formulated for primary forming into wrought products. Cited properties are appropriate for the annealed condition. XM-21 is the ASTM designation for this material. S30452 is the UNS number.

It has a moderately low ductility among the wrought austenitic stainless steels in the database.

The graph bars on the material properties cards below compare S30452 stainless steel to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

210

Elastic (Young's, Tensile) Modulus

200 GPa 29 x 106 psi

Elongation at Break

34 %

Fatigue Strength

250 MPa 36 x 103 psi

Poisson's Ratio

0.28

Rockwell B Hardness

88

Shear Modulus

77 GPa 11 x 106 psi

Shear Strength

440 MPa 63 x 103 psi

Tensile Strength: Ultimate (UTS)

660 MPa 95 x 103 psi

Tensile Strength: Yield (Proof)

310 MPa 45 x 103 psi

Thermal Properties

Latent Heat of Fusion

290 J/g

Maximum Temperature: Corrosion

420 °C 790 °F

Maximum Temperature: Mechanical

960 °C 1760 °F

Melting Completion (Liquidus)

1420 °C 2590 °F

Melting Onset (Solidus)

1380 °C 2510 °F

Specific Heat Capacity

480 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

16 W/m-K 9.1 BTU/h-ft-°F

Thermal Expansion

16 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

2.4 % IACS

Electrical Conductivity: Equal Weight (Specific)

2.7 % IACS

Otherwise Unclassified Properties

Base Metal Price

15 % relative

Density

7.8 g/cm3 490 lb/ft3

Embodied Carbon

3.0 kg CO2/kg material

Embodied Energy

43 MJ/kg 18 x 103 BTU/lb

Embodied Water

150 L/kg 17 gal/lb

Common Calculations

PREN (Pitting Resistance)

23

Resilience: Ultimate (Unit Rupture Work)

180 MJ/m3

Resilience: Unit (Modulus of Resilience)

250 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

25 points

Strength to Weight: Axial

23 points

Strength to Weight: Bending

22 points

Thermal Diffusivity

4.2 mm2/s

Thermal Shock Resistance

15 points

Alloy Composition

Among wrought stainless steels, the composition of S30452 stainless steel is notable for containing comparatively high amounts of chromium (Cr) and nickel (Ni). Chromium is the defining alloying element of stainless steel. Higher chromium content imparts additional corrosion resistance. Nickel is primarily used to achieve a specific microstructure. In addition, it has a beneficial effect on mechanical properties and certain types of corrosion.

Iron (Fe)Fe 66.3 to 73.8
Chromium (Cr)Cr 18 to 20
Nickel (Ni)Ni 8.0 to 10.5
Manganese (Mn)Mn 0 to 2.0
Silicon (Si)Si 0 to 0.75
Nitrogen (N)N 0.16 to 0.3
Carbon (C)C 0 to 0.080
Phosphorus (P)P 0 to 0.045
Sulfur (S)S 0 to 0.030

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Similar Alloys

Further Reading

ASTM A240: Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications

Welding Metallurgy of Stainless Steels, Erich Folkhard et al., 2012

ASTM A959: Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Stainless Steels

Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002

Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984

ASM Specialty Handbook: Stainless Steels, J. R. Davis (editor), 1994

Advances in Stainless Steels, Baldev Raj et al. (editors), 2010