MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. Grade 25 Titanium

S30600 stainless steel belongs to the iron alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
11
Fatigue Strength, MPa 250
550
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
29
Shear Modulus, GPa 76
40
Shear Strength, MPa 430
600
Tensile Strength: Ultimate (UTS), MPa 610
1000
Tensile Strength: Yield (Proof), MPa 270
940

Thermal Properties

Latent Heat of Fusion, J/g 350
410
Maximum Temperature: Mechanical, °C 950
340
Melting Completion (Liquidus), °C 1380
1610
Melting Onset (Solidus), °C 1330
1560
Specific Heat Capacity, J/kg-K 490
560
Thermal Conductivity, W/m-K 14
7.1
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 3.6
43
Embodied Energy, MJ/kg 51
700
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
4220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22
62
Strength to Weight: Bending, points 21
50
Thermal Diffusivity, mm2/s 3.7
2.8
Thermal Shock Resistance, points 14
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.018
0 to 0.080
Chromium (Cr), % 17 to 18.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 58.9 to 65.3
0 to 0.4
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4