MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. EN 1.8935 Steel

Both S31100 stainless steel and EN 1.8935 steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is EN 1.8935 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 4.5
19
Fatigue Strength, MPa 330
330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 580
400
Tensile Strength: Ultimate (UTS), MPa 1000
640
Tensile Strength: Yield (Proof), MPa 710
490

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
2.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.7
Embodied Energy, MJ/kg 44
24
Embodied Water, L/kg 170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 36
23
Strength to Weight: Bending, points 29
21
Thermal Diffusivity, mm2/s 4.2
12
Thermal Shock Resistance, points 28
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.060
0 to 0.2
Chromium (Cr), % 25 to 27
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 63.6 to 69
95.2 to 98.9
Manganese (Mn), % 0 to 1.0
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 6.0 to 7.0
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0 to 0.2