MakeItFrom.com
Menu (ESC)

S31655 Stainless Steel vs. EN 1.4724 Stainless Steel

Both S31655 stainless steel and EN 1.4724 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31655 stainless steel and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
16
Fatigue Strength, MPa 300
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Shear Strength, MPa 490
340
Tensile Strength: Ultimate (UTS), MPa 710
550
Tensile Strength: Yield (Proof), MPa 350
280

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 430
390
Maximum Temperature: Mechanical, °C 1010
850
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 160
110

Common Calculations

PREN (Pitting Resistance) 27
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
73
Resilience: Unit (Modulus of Resilience), kJ/m3 310
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.0
5.6
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 19.5 to 21.5
12 to 14
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 63.2 to 71.9
82.2 to 86.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0.5 to 1.5
0
Nickel (Ni), % 8.0 to 9.5
0
Nitrogen (N), % 0.14 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0.7 to 1.4
Sulfur (S), % 0 to 0.015
0 to 0.015