MakeItFrom.com
Menu (ESC)

S31655 Stainless Steel vs. EN 1.8834 Steel

Both S31655 stainless steel and EN 1.8834 steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S31655 stainless steel and the bottom bar is EN 1.8834 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
25
Fatigue Strength, MPa 300
260
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 490
340
Tensile Strength: Ultimate (UTS), MPa 710
530
Tensile Strength: Yield (Proof), MPa 350
360

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1010
410
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.6
Embodied Energy, MJ/kg 46
22
Embodied Water, L/kg 160
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 310
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.034
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 19.5 to 21.5
0 to 0.35
Copper (Cu), % 0 to 1.0
0 to 0.6
Iron (Fe), % 63.2 to 71.9
95.6 to 99.985
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0.5 to 1.5
0 to 0.13
Nickel (Ni), % 8.0 to 9.5
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0.14 to 0.25
0 to 0.017
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.015
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.12