MakeItFrom.com
Menu (ESC)

S31730 Stainless Steel vs. AWS E630

Both S31730 stainless steel and AWS E630 are iron alloys. They have 83% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is S31730 stainless steel and the bottom bar is AWS E630.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
8.0
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 540
1040

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 4.6
2.8
Embodied Energy, MJ/kg 63
40
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 30
18
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
37
Strength to Weight: Bending, points 18
29
Thermal Shock Resistance, points 12
28

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 17 to 19
16 to 16.8
Copper (Cu), % 4.0 to 5.0
3.3 to 4.0
Iron (Fe), % 52.4 to 61
71.6 to 75.9
Manganese (Mn), % 0 to 2.0
0.25 to 0.75
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.75
Nickel (Ni), % 15 to 16.5
4.5 to 5.0
Niobium (Nb), % 0
0.15 to 0.3
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030