MakeItFrom.com
Menu (ESC)

S31803 Stainless Steel vs. C11600 Copper

S31803 stainless steel belongs to the iron alloys classification, while C11600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S31803 stainless steel and the bottom bar is C11600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 29
2.7 to 50
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 460
160 to 240
Tensile Strength: Ultimate (UTS), MPa 710
230 to 410
Tensile Strength: Yield (Proof), MPa 500
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1060
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 17
35
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
9.7 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 630
25 to 710
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
7.2 to 13
Strength to Weight: Bending, points 23
9.4 to 14
Thermal Diffusivity, mm2/s 4.3
110
Thermal Shock Resistance, points 20
8.2 to 15

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 21 to 23
0
Copper (Cu), % 0
99.78 to 99.915
Iron (Fe), % 63.7 to 71.9
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0 to 0.020
0
Residuals, % 0
0 to 0.1