MakeItFrom.com
Menu (ESC)

S32304 Stainless Steel vs. S21640 Stainless Steel

Both S32304 stainless steel and S21640 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32304 stainless steel and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
46
Fatigue Strength, MPa 330
320
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
78
Shear Strength, MPa 440
520
Tensile Strength: Ultimate (UTS), MPa 670
740
Tensile Strength: Yield (Proof), MPa 460
350

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 440
490
Maximum Temperature: Mechanical, °C 1050
940
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
17
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 40
51
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 26
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
280
Resilience: Unit (Modulus of Resilience), kJ/m3 520
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 18
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 21.5 to 24.5
17.5 to 19.5
Copper (Cu), % 0.050 to 0.6
0
Iron (Fe), % 65 to 75.4
63 to 74.3
Manganese (Mn), % 0 to 2.5
3.5 to 6.5
Molybdenum (Mo), % 0.050 to 0.6
0.5 to 2.0
Nickel (Ni), % 3.0 to 5.5
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0.050 to 0.2
0.080 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.060
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030