MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. EN 1.4584 Stainless Steel

Both S32506 stainless steel and EN 1.4584 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is EN 1.4584 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
34
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
79
Tensile Strength: Ultimate (UTS), MPa 710
500
Tensile Strength: Yield (Proof), MPa 500
210

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 16
17
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 20
31
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.9
5.7
Embodied Energy, MJ/kg 54
78
Embodied Water, L/kg 180
200

Common Calculations

PREN (Pitting Resistance) 38
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 620
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.3
4.5
Thermal Shock Resistance, points 19
12

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 24 to 26
19 to 21
Copper (Cu), % 0
1.0 to 3.0
Iron (Fe), % 60.8 to 67.4
41.7 to 52
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 3.0 to 3.5
4.0 to 5.0
Nickel (Ni), % 5.5 to 7.2
24 to 26
Nitrogen (N), % 0.080 to 0.2
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 0.050 to 0.3
0