MakeItFrom.com
Menu (ESC)

S32520 Stainless Steel vs. EN 1.8831 Steel

Both S32520 stainless steel and EN 1.8831 steel are iron alloys. They have 63% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32520 stainless steel and the bottom bar is EN 1.8831 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
19
Fatigue Strength, MPa 460
330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 560
390
Tensile Strength: Ultimate (UTS), MPa 860
630
Tensile Strength: Yield (Proof), MPa 630
480

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.6
Embodied Energy, MJ/kg 55
21
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 960
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 31
22
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 24
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 2.0
0
Iron (Fe), % 57.3 to 66.8
96.6 to 99.98
Manganese (Mn), % 0 to 1.5
0 to 1.7
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.2
Nickel (Ni), % 5.5 to 8.0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.2 to 0.35
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.1