MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. Grade 13 Titanium

S32615 stainless steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 28
27
Fatigue Strength, MPa 180
140
Poisson's Ratio 0.28
0.32
Reduction in Area, % 46
34
Shear Modulus, GPa 75
41
Shear Strength, MPa 400
200
Tensile Strength: Ultimate (UTS), MPa 620
310
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 370
420
Maximum Temperature: Mechanical, °C 990
320
Melting Completion (Liquidus), °C 1350
1660
Melting Onset (Solidus), °C 1310
1610
Specific Heat Capacity, J/kg-K 500
540
Thermal Expansion, µm/m-K 15
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
37
Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 4.4
32
Embodied Energy, MJ/kg 63
520
Embodied Water, L/kg 170
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
73
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
22
Thermal Shock Resistance, points 15
24

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 16.5 to 19.5
0
Copper (Cu), % 1.5 to 2.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 46.4 to 57.9
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 4.8 to 6.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4