MakeItFrom.com
Menu (ESC)

S32760 Stainless Steel vs. Grade 5 Titanium

S32760 stainless steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32760 stainless steel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
8.6 to 11
Fatigue Strength, MPa 450
530 to 630
Poisson's Ratio 0.27
0.32
Reduction in Area, % 51
21 to 25
Rockwell C Hardness 24
33
Shear Modulus, GPa 80
40
Shear Strength, MPa 550
600 to 710
Tensile Strength: Ultimate (UTS), MPa 850
1000 to 1190
Tensile Strength: Yield (Proof), MPa 620
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1410
1650
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 15
6.8
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 22
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 4.1
38
Embodied Energy, MJ/kg 57
610
Embodied Water, L/kg 180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 930
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30
62 to 75
Strength to Weight: Bending, points 25
50 to 56
Thermal Diffusivity, mm2/s 4.0
2.7
Thermal Shock Resistance, points 23
76 to 91

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0.5 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 57.6 to 65.8
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.3
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
87.4 to 91
Tungsten (W), % 0.5 to 1.0
0
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4