MakeItFrom.com
Menu (ESC)

S32808 Stainless Steel vs. ASTM A182 Grade F3VCb

Both S32808 stainless steel and ASTM A182 grade F3VCb are iron alloys. Both are furnished in the annealed condition. They have 65% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32808 stainless steel and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
210
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 17
21
Fatigue Strength, MPa 350
320
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
74
Shear Strength, MPa 480
420
Tensile Strength: Ultimate (UTS), MPa 780
670
Tensile Strength: Yield (Proof), MPa 570
460

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
470
Melting Completion (Liquidus), °C 1470
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
4.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.0
2.4
Embodied Energy, MJ/kg 57
33
Embodied Water, L/kg 180
64

Common Calculations

PREN (Pitting Resistance) 40
6.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 790
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 3.8
11
Thermal Shock Resistance, points 21
19

Alloy Composition

Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0 to 0.030
0.1 to 0.15
Chromium (Cr), % 27 to 27.9
2.7 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 58.1 to 62.8
93.8 to 95.8
Manganese (Mn), % 0 to 1.1
0.3 to 0.6
Molybdenum (Mo), % 0.8 to 1.2
0.9 to 1.1
Nickel (Ni), % 7.0 to 8.2
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Tungsten (W), % 2.1 to 2.5
0
Vanadium (V), % 0
0.2 to 0.3