MakeItFrom.com
Menu (ESC)

S32950 Stainless Steel vs. EN 1.8834 Steel

Both S32950 stainless steel and EN 1.8834 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32950 stainless steel and the bottom bar is EN 1.8834 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
25
Fatigue Strength, MPa 330
260
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 480
340
Tensile Strength: Ultimate (UTS), MPa 780
530
Tensile Strength: Yield (Proof), MPa 550
360

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
47
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
2.4
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.6
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 730
340
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 21
16

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.034
Carbon (C), % 0 to 0.030
0 to 0.16
Chromium (Cr), % 26 to 29
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 60.3 to 69.4
95.6 to 99.985
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 1.0 to 2.5
0 to 0.13
Nickel (Ni), % 3.5 to 5.2
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0.15 to 0.35
0 to 0.017
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.55
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.12