MakeItFrom.com
Menu (ESC)

S32950 Stainless Steel vs. S44401 Stainless Steel

Both S32950 stainless steel and S44401 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32950 stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
21
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
78
Shear Strength, MPa 480
300
Tensile Strength: Ultimate (UTS), MPa 780
480
Tensile Strength: Yield (Proof), MPa 550
300

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 460
510
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
12
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.9
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 37
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
90
Resilience: Unit (Modulus of Resilience), kJ/m3 730
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.3
5.9
Thermal Shock Resistance, points 21
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 26 to 29
17.5 to 19.5
Iron (Fe), % 60.3 to 69.4
75.1 to 80.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 2.5
1.8 to 2.5
Nickel (Ni), % 3.5 to 5.2
0 to 1.0
Nitrogen (N), % 0.15 to 0.35
0 to 0.035
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8