MakeItFrom.com
Menu (ESC)

S34565 Stainless Steel vs. AWS ERNiFeCr-2

S34565 stainless steel belongs to the iron alloys classification, while AWS ERNiFeCr-2 belongs to the nickel alloys. They have 58% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is S34565 stainless steel and the bottom bar is AWS ERNiFeCr-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 39
28
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
75
Tensile Strength: Ultimate (UTS), MPa 900
1300

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
75
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 5.3
13
Embodied Energy, MJ/kg 73
190
Embodied Water, L/kg 210
250

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 32
43
Strength to Weight: Bending, points 26
32
Thermal Diffusivity, mm2/s 3.2
3.2
Thermal Shock Resistance, points 22
38

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0030
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 23 to 25
17 to 21
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 43.2 to 51.6
11.6 to 24.6
Manganese (Mn), % 5.0 to 7.0
0 to 0.35
Molybdenum (Mo), % 4.0 to 5.0
2.8 to 3.3
Nickel (Ni), % 16 to 18
50 to 55
Niobium (Nb), % 0 to 0.1
4.8 to 5.5
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.030
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Residuals, % 0
0 to 0.5