MakeItFrom.com
Menu (ESC)

S38815 Stainless Steel vs. 2011A Aluminum

S38815 stainless steel belongs to the iron alloys classification, while 2011A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S38815 stainless steel and the bottom bar is 2011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 34
6.8 to 16
Fatigue Strength, MPa 230
75 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 410
190 to 250
Tensile Strength: Ultimate (UTS), MPa 610
310 to 410
Tensile Strength: Yield (Proof), MPa 290
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 370
390
Maximum Temperature: Mechanical, °C 860
190
Melting Completion (Liquidus), °C 1360
660
Melting Onset (Solidus), °C 1310
550
Specific Heat Capacity, J/kg-K 500
870
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.5
3.1
Embodied Carbon, kg CO2/kg material 3.8
7.9
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
20 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 220
140 to 670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 22
28 to 37
Strength to Weight: Bending, points 21
33 to 40
Thermal Shock Resistance, points 15
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.3
91.5 to 95.1
Bismuth (Bi), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0.75 to 1.5
4.5 to 6.0
Iron (Fe), % 56.1 to 67
0 to 0.5
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 13 to 17
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 5.5 to 6.5
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15